Copied to
clipboard

G = C23.328C24order 128 = 27

45th central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.7C23, C23.328C24, C22.1412+ 1+4, C2.13D42, C4⋊C438D4, (C2×D4)⋊32D4, C41(C4⋊D4), C22⋊C422D4, C23.40(C2×D4), C232D410C2, C2.28(D45D4), C2.10(Q86D4), C23.23D434C2, C23.10D419C2, (C23×C4).341C22, (C22×C4).795C23, (C2×C42).475C22, C22.208(C22×D4), C24.3C2234C2, (C22×D4).126C22, C23.65C2345C2, C2.C42.89C22, C2.9(C22.34C24), C2.13(C22.26C24), (C2×C4×D4)⋊29C2, (C2×C4⋊D4)⋊8C2, (C2×C41D4)⋊3C2, (C2×C4).50(C2×D4), (C4×C22⋊C4)⋊54C2, C2.26(C2×C4⋊D4), (C2×C4).98(C4○D4), (C2×C4⋊C4).847C22, C22.207(C2×C4○D4), (C2×C22⋊C4).118C22, SmallGroup(128,1160)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.328C24
C1C2C22C23C22×C4C23×C4C4×C22⋊C4 — C23.328C24
C1C23 — C23.328C24
C1C23 — C23.328C24
C1C23 — C23.328C24

Generators and relations for C23.328C24
 G = < a,b,c,d,e,f,g | a2=b2=c2=f2=1, d2=b, e2=ba=ab, g2=a, ac=ca, ede-1=gdg-1=ad=da, ae=ea, af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >

Subgroups: 916 in 416 conjugacy classes, 120 normal (42 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C24, C2.C42, C2.C42, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C4×D4, C4⋊D4, C41D4, C23×C4, C23×C4, C22×D4, C22×D4, C4×C22⋊C4, C23.23D4, C23.65C23, C24.3C22, C232D4, C23.10D4, C2×C4×D4, C2×C4⋊D4, C2×C4⋊D4, C2×C41D4, C23.328C24
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C4⋊D4, C22×D4, C2×C4○D4, 2+ 1+4, C2×C4⋊D4, C22.26C24, C22.34C24, D42, D45D4, Q86D4, C23.328C24

Smallest permutation representation of C23.328C24
On 64 points
Generators in S64
(1 13)(2 14)(3 15)(4 16)(5 23)(6 24)(7 21)(8 22)(9 27)(10 28)(11 25)(12 26)(17 64)(18 61)(19 62)(20 63)(29 39)(30 40)(31 37)(32 38)(33 44)(34 41)(35 42)(36 43)(45 59)(46 60)(47 57)(48 58)(49 53)(50 54)(51 55)(52 56)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 25)(2 26)(3 27)(4 28)(5 39)(6 40)(7 37)(8 38)(9 15)(10 16)(11 13)(12 14)(17 33)(18 34)(19 35)(20 36)(21 31)(22 32)(23 29)(24 30)(41 61)(42 62)(43 63)(44 64)(45 53)(46 54)(47 55)(48 56)(49 59)(50 60)(51 57)(52 58)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 49 15 55)(2 54 16 52)(3 51 13 53)(4 56 14 50)(5 36 21 41)(6 44 22 35)(7 34 23 43)(8 42 24 33)(9 47 25 59)(10 58 26 46)(11 45 27 57)(12 60 28 48)(17 38 62 30)(18 29 63 37)(19 40 64 32)(20 31 61 39)
(1 2)(3 4)(5 24)(6 23)(7 22)(8 21)(9 10)(11 12)(13 14)(15 16)(17 36)(18 35)(19 34)(20 33)(25 26)(27 28)(29 40)(30 39)(31 38)(32 37)(41 62)(42 61)(43 64)(44 63)(45 50)(46 49)(47 52)(48 51)(53 60)(54 59)(55 58)(56 57)
(1 23 13 5)(2 6 14 24)(3 21 15 7)(4 8 16 22)(9 37 27 31)(10 32 28 38)(11 39 25 29)(12 30 26 40)(17 46 64 60)(18 57 61 47)(19 48 62 58)(20 59 63 45)(33 54 44 50)(34 51 41 55)(35 56 42 52)(36 49 43 53)

G:=sub<Sym(64)| (1,13)(2,14)(3,15)(4,16)(5,23)(6,24)(7,21)(8,22)(9,27)(10,28)(11,25)(12,26)(17,64)(18,61)(19,62)(20,63)(29,39)(30,40)(31,37)(32,38)(33,44)(34,41)(35,42)(36,43)(45,59)(46,60)(47,57)(48,58)(49,53)(50,54)(51,55)(52,56), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,25)(2,26)(3,27)(4,28)(5,39)(6,40)(7,37)(8,38)(9,15)(10,16)(11,13)(12,14)(17,33)(18,34)(19,35)(20,36)(21,31)(22,32)(23,29)(24,30)(41,61)(42,62)(43,63)(44,64)(45,53)(46,54)(47,55)(48,56)(49,59)(50,60)(51,57)(52,58), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,49,15,55)(2,54,16,52)(3,51,13,53)(4,56,14,50)(5,36,21,41)(6,44,22,35)(7,34,23,43)(8,42,24,33)(9,47,25,59)(10,58,26,46)(11,45,27,57)(12,60,28,48)(17,38,62,30)(18,29,63,37)(19,40,64,32)(20,31,61,39), (1,2)(3,4)(5,24)(6,23)(7,22)(8,21)(9,10)(11,12)(13,14)(15,16)(17,36)(18,35)(19,34)(20,33)(25,26)(27,28)(29,40)(30,39)(31,38)(32,37)(41,62)(42,61)(43,64)(44,63)(45,50)(46,49)(47,52)(48,51)(53,60)(54,59)(55,58)(56,57), (1,23,13,5)(2,6,14,24)(3,21,15,7)(4,8,16,22)(9,37,27,31)(10,32,28,38)(11,39,25,29)(12,30,26,40)(17,46,64,60)(18,57,61,47)(19,48,62,58)(20,59,63,45)(33,54,44,50)(34,51,41,55)(35,56,42,52)(36,49,43,53)>;

G:=Group( (1,13)(2,14)(3,15)(4,16)(5,23)(6,24)(7,21)(8,22)(9,27)(10,28)(11,25)(12,26)(17,64)(18,61)(19,62)(20,63)(29,39)(30,40)(31,37)(32,38)(33,44)(34,41)(35,42)(36,43)(45,59)(46,60)(47,57)(48,58)(49,53)(50,54)(51,55)(52,56), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,25)(2,26)(3,27)(4,28)(5,39)(6,40)(7,37)(8,38)(9,15)(10,16)(11,13)(12,14)(17,33)(18,34)(19,35)(20,36)(21,31)(22,32)(23,29)(24,30)(41,61)(42,62)(43,63)(44,64)(45,53)(46,54)(47,55)(48,56)(49,59)(50,60)(51,57)(52,58), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,49,15,55)(2,54,16,52)(3,51,13,53)(4,56,14,50)(5,36,21,41)(6,44,22,35)(7,34,23,43)(8,42,24,33)(9,47,25,59)(10,58,26,46)(11,45,27,57)(12,60,28,48)(17,38,62,30)(18,29,63,37)(19,40,64,32)(20,31,61,39), (1,2)(3,4)(5,24)(6,23)(7,22)(8,21)(9,10)(11,12)(13,14)(15,16)(17,36)(18,35)(19,34)(20,33)(25,26)(27,28)(29,40)(30,39)(31,38)(32,37)(41,62)(42,61)(43,64)(44,63)(45,50)(46,49)(47,52)(48,51)(53,60)(54,59)(55,58)(56,57), (1,23,13,5)(2,6,14,24)(3,21,15,7)(4,8,16,22)(9,37,27,31)(10,32,28,38)(11,39,25,29)(12,30,26,40)(17,46,64,60)(18,57,61,47)(19,48,62,58)(20,59,63,45)(33,54,44,50)(34,51,41,55)(35,56,42,52)(36,49,43,53) );

G=PermutationGroup([[(1,13),(2,14),(3,15),(4,16),(5,23),(6,24),(7,21),(8,22),(9,27),(10,28),(11,25),(12,26),(17,64),(18,61),(19,62),(20,63),(29,39),(30,40),(31,37),(32,38),(33,44),(34,41),(35,42),(36,43),(45,59),(46,60),(47,57),(48,58),(49,53),(50,54),(51,55),(52,56)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,25),(2,26),(3,27),(4,28),(5,39),(6,40),(7,37),(8,38),(9,15),(10,16),(11,13),(12,14),(17,33),(18,34),(19,35),(20,36),(21,31),(22,32),(23,29),(24,30),(41,61),(42,62),(43,63),(44,64),(45,53),(46,54),(47,55),(48,56),(49,59),(50,60),(51,57),(52,58)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,49,15,55),(2,54,16,52),(3,51,13,53),(4,56,14,50),(5,36,21,41),(6,44,22,35),(7,34,23,43),(8,42,24,33),(9,47,25,59),(10,58,26,46),(11,45,27,57),(12,60,28,48),(17,38,62,30),(18,29,63,37),(19,40,64,32),(20,31,61,39)], [(1,2),(3,4),(5,24),(6,23),(7,22),(8,21),(9,10),(11,12),(13,14),(15,16),(17,36),(18,35),(19,34),(20,33),(25,26),(27,28),(29,40),(30,39),(31,38),(32,37),(41,62),(42,61),(43,64),(44,63),(45,50),(46,49),(47,52),(48,51),(53,60),(54,59),(55,58),(56,57)], [(1,23,13,5),(2,6,14,24),(3,21,15,7),(4,8,16,22),(9,37,27,31),(10,32,28,38),(11,39,25,29),(12,30,26,40),(17,46,64,60),(18,57,61,47),(19,48,62,58),(20,59,63,45),(33,54,44,50),(34,51,41,55),(35,56,42,52),(36,49,43,53)]])

38 conjugacy classes

class 1 2A···2G2H···2M2N2O4A···4H4I···4T4U4V
order12···22···2224···44···444
size11···14···4882···24···488

38 irreducible representations

dim111111111122224
type++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2D4D4D4C4○D42+ 1+4
kernelC23.328C24C4×C22⋊C4C23.23D4C23.65C23C24.3C22C232D4C23.10D4C2×C4×D4C2×C4⋊D4C2×C41D4C22⋊C4C4⋊C4C2×D4C2×C4C22
# reps112112214144482

Matrix representation of C23.328C24 in GL6(𝔽5)

400000
040000
001000
000100
000010
000001
,
100000
010000
004000
000400
000040
000004
,
100000
010000
004000
000400
000010
000001
,
400000
110000
000400
001000
000004
000010
,
430000
110000
000100
004000
000030
000003
,
400000
040000
000400
004000
000001
000010
,
120000
440000
001000
000100
000010
000001

G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,4,0],[4,1,0,0,0,0,3,1,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,4,0,0,0,0,2,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C23.328C24 in GAP, Magma, Sage, TeX

C_2^3._{328}C_2^4
% in TeX

G:=Group("C2^3.328C2^4");
// GroupNames label

G:=SmallGroup(128,1160);
// by ID

G=gap.SmallGroup(128,1160);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,224,253,344,758,723,675,80]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^2=1,d^2=b,e^2=b*a=a*b,g^2=a,a*c=c*a,e*d*e^-1=g*d*g^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽